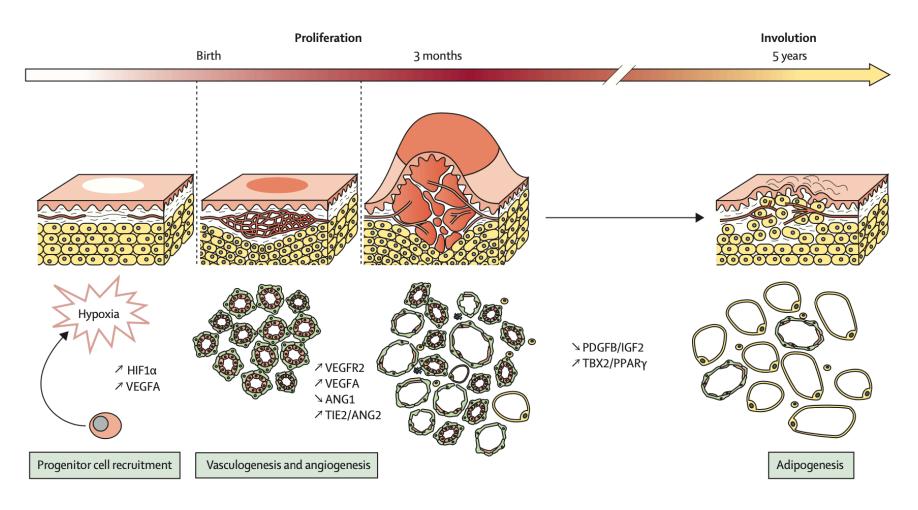


Infantile hemangioma and other vascular tumors of infancy

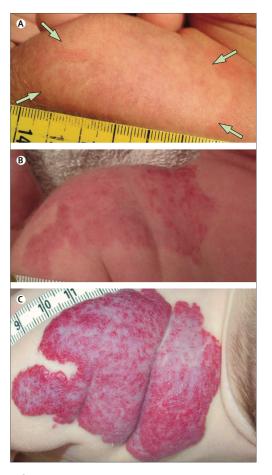

Dr. Yassaman Götti - Alipour

Training course in pediatric dermatology 20.01.2022

Infantile Hemangioma (IH)

- Benign vascular tumor of infancy
- Most common pediatric vascular tumor (affects 4% of infants)
- F>M (2.3-2.9x)
- Risk factors:
 - Prematurity
 - Low birth weight
 - White race
 - Multiple gestations
 - Familial history of hemangioma
 - Preeclampsia, placenta previa

Pathogenesis

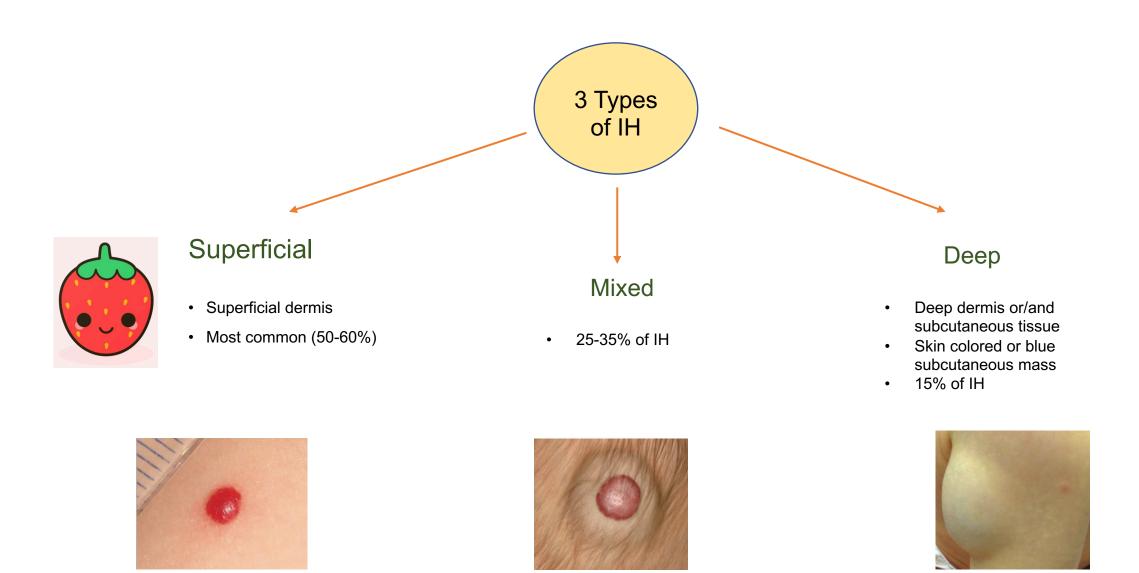

Pathogenesis

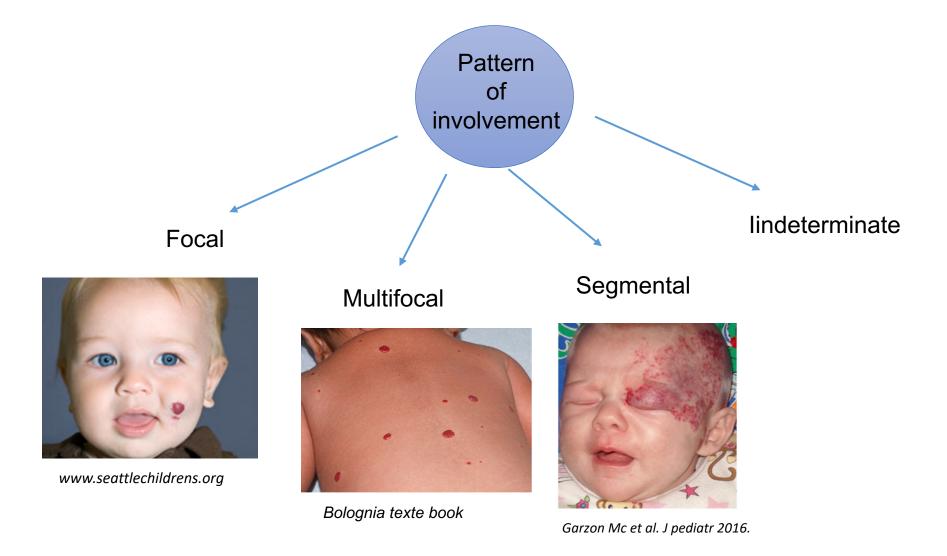
Role of renin-angiotensin system (RAS)

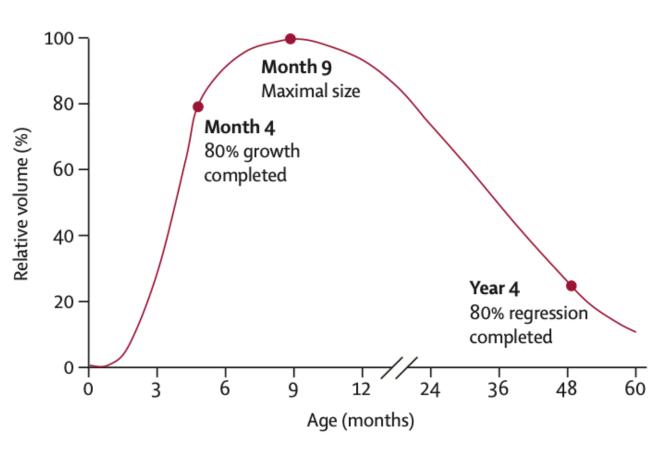
- Angiotensin Renin ATI ACE ATII
- High levels of Renin is physiological during infancy
- ATII promotes the secretion of the vascular endothelial growth factor system and osteoprotegerin, a protumor survival factor, maintaining a favorable environment for vasculogenesis and antiapoptosis

Clinical Features

- Absent at birth and appears during the first weeks of life
- Precursor lesions:
 - Telangiectasia with vasoconstrictive halo
 - Pale area
 - Pink patch
 - Bluish tumefaction
 - DD: anemic naevus or capillary malformation
- Localization:
 - Anywhere on the skin and mucosal surface
 - 50% on trunk







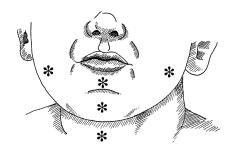
Bolognia texte book

Natural history

Exceptions:

- IH located on head and neck, deep IH and segmental morphology:
 - ➤ Late growth can occur in children after 3 years of age
- Deep IH: later regression (7-8 years)
- Mixed IH:
 - > Overlap of growth and regression phase
 - Regression of superficial part and growth of the deep part

Locoregional complications



Obstruction and functional impairment

- <u>Periocular IH</u> => astigmatism (33%), visual axis obstruction, nasolacrimal duct obstruction, ptosis, amblyopia and strabismus
- <u>Peri-oral IH</u> => Feeding difficulties, delay in tooth eruption and enamel hypoplasia
- <u>External acoustic meatus IH</u> => conductive hear loss
- may be associated with airway IH => obstruction

Omicsonline.org

Orlow SJ J Pediatr 1997

Spinks J. BMJ case report 2010.

Ulceration

Most common complication (around 16% of patients with IH)

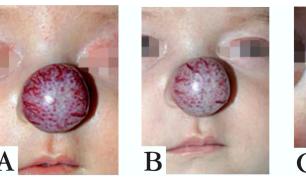
Observed mainly during 4th and 8th months of age (proliferative stage)

Pain, discomfort, bleeding, infection and leaves scars

Risk factors:

- Proliferative stage
- Large, segmental, thick superficial and mixed IH
- Localization: Lower lip, neck, anogenital region

C. Léauté-Labrèze. Lancet 2017



Sashasay.com

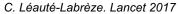
Disfigurement

IH located on the center of the face

- Nose
 Cartilage destruction and nasal deformity
- Lips

C

J Nakano De Melo. An Bras Dermatol 2013


Cosmetic sequelae

- ~70% of untreated IH
- Telangiectasia
- Fibrofatty tissue
- Anetoderma
- Redundant skin
- Scarring

C. Léauté-Labrèze Lancet 2017

plasticsurgerykey.com

Systemic complications and associated syndrome

Multifocal IH

≥ 5 => risk of hepatic infantile hemangioma (HIH)

Hepatic hemangioma

 Congenital hemangioma

Not associated with skin lesions

Complications of HIH:

- Bleeding
- Abdominal compartment syndrome
- Congestive cardiac failure
- Hypothyroidism

C. Léauté-Labrèze. Lancet 2017

Hypothyroidisme

Production 3 iodothyronine deiodinase by IH => deactivation of T3 and T4

May occur in patients with:

- Large cutaneous IH
- HIH

Segmental IH of the face or scalp > 5 cm

PHACE syndrome

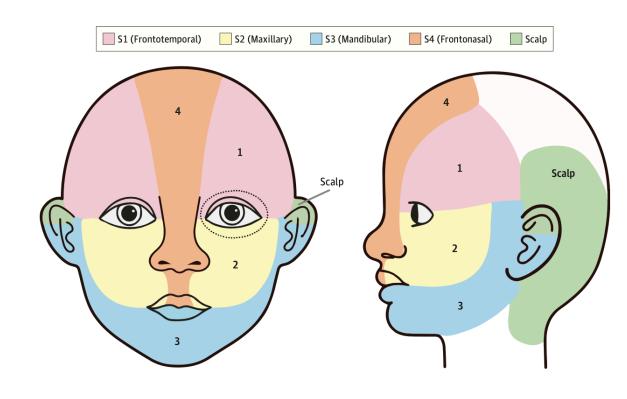
(31 to 58% of patients with large facial segmental IH)

P: posterior fossa anomalies

H: hemangioma (Segmental IH, >5 cm)

A: arterial lesions

C: cardiac abnormalities/coarctation of the aorta


•• E: eye anomalies

H. Darrow. Pediatrics 2015

PHACE syndrome

- Increased risk with:
 - Size of IH
 - Involvement of the forehead
 - Numbers of segment involved
- Cerebrovascular anomalies represent the most common extracutaneous features => risk of stroke
- Associated with large IH involving extra facial locations:
 - Posterior scalp
 - Neck
 - Upper trunk
 - Upper arms
- May occur with:
 - Focal or small IH
 - Even in absence of IH

Endicott A et al. JAMA Dermatology November 2021

PHACE syndrome

Organ systems	Majo	or criteria	Minor criteria
Arterial anomalies	arteries Aberrant origin or course of the lar common arch variants such as boy	teries or without moyamoya collaterals plasia of the large cerebral and cervical ge cerebral or cervical arteries except vine arch. anastomosis (proatlantal segmental,	urysm of any of the cerebral arteries
Structural brain	Posterior fossa brain anomalies Dandy-Walker complex Other hypoplasia/dysplasia of the r	Malf	ine brain anomalies formation of cortical development
Cardiovascular	Aortic arch anomalies Coarctation of the aorta Dysplasia* Aneurysm Aberrant origin of the subclavian a	Righ	tricular septal defect at aortic arch/double aortic arch demic venous anomalies
Ocular	Posterior segment abnormalities Persistent hyperplastic primary vitr Persistent fetal vasculature Retinal vascular anomalies Morning glory disc anomaly Optic nerve hypoplasia Peripapillary staphyloma	reous Micr Scle Colo	erior segment abnormalities rophthalmia rocornea aboma aracts
Ventral/midline	Anomaly of the midline chest and a - Sternal defect - Sternal pit - Sternal cleft - Supraumbilical raphe		pic thyroid hypopituitarism line sternal papule/hamartoma
		Definite PHACE	
Hemangioma >5 cm in diameter of the head including scalp PLUS 1 major criteria or 2 minor criteria		Hemangioma of the neck, upper trunk or trunk and proximal upper extremity PLUS 2 major criteria	
		Possible PHACE	
Hemangioma > 5 cm in diameter of the head including scalp PLUS 1 minor criteria		Hemangioma of the neck, upper trunk or trunk and proximal upper extremity PLUS 1 major or 2 minor	No hemangioma PLUS 2 major criteria

Large lumbosacral IH (2-5 cm)

LUMBAR syndrome

- L: lower body IH (segmental IH of lumbosacral and anogenital region)
- U: Uro-genital anomalies
- M: Myelopathy
- B: Bony deformities
- A: Anorectal malformations
- R: Renal anomalies

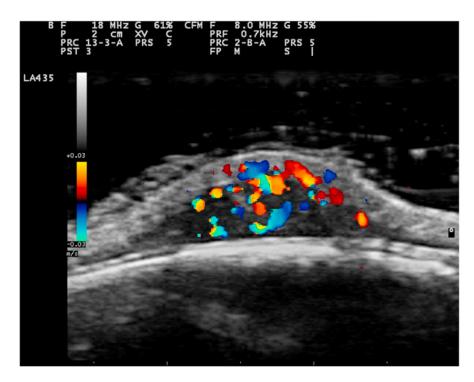
Schumacher W. Pediatr radiol 2012

LUMBAR SYNDROME Renal anomalies, e.g. hypoplastic, single, or Myelopathy, e.g. pelvic kidney tethered spinal cord, lipomyelomeningocele **U**rogenital anomalies, e.g. of the bladder, ureters, or genitalia Lower body segmental infantile hemangioma; Anorectal anomalies, Lipoma; other e.g. imperforate anus, cutaneous fistula anomalies, e.g. "skin tag" Arterial anomalies of the lower limb, Bony deformities, e.g. e.g. stenosis, sacral anomaly, hip dysplasia dysplasia, scoliosis, leg length/width discrepancy

70-80% of patients

Bolognia texte book

Investigations



Diagnosis

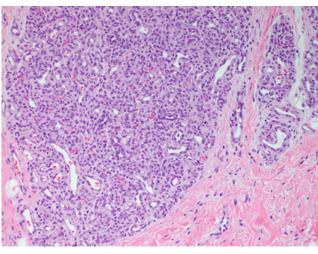
- Is clinical in the majority of cases
- If doubt, particularly for deep IH => Doppler ultrasound

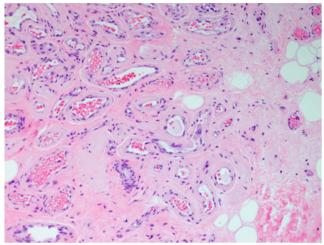
Rodriguez Bandera et al. JAAD 2021

Histology

Proliferative stage

Dermal proliferation of lobules and sheets of tightly packed, capillary-sized vessels lined with plump endothelial cells.


Moderate mitotic figures are present.


Involution stage

Decreased density of capillaries surrounded by fibro-fatty tissue.

Reduced numbers of mitotic figures.

Immunohistochemestry: GLUT-1 +

X100, coloration hematoxylin and eosin

Investigations in specific situations

If multifocal infantile hemangioma ≥ 5 => liver ultrasound for HIH If HIH or large cutaneous IH => TSH

If segmental IH (face and neck or lumbar) => investigations to search extracutaneous complications

- Head and neck MRI (including aortic arch)
- Echocardiography
- Refer to ophthalmologist
- Spinal MRI
- Pelvic and abdominal US

Periocular IH => referral to ophthalmologist

Peri oral IH => Referral to dentist

Beard region => Referral to ORL

Management

Is active medical treatment is indicated?

- 1. Ulceration or locations likely to ulcerate; eg, neck, perineum, other flexures
- 2. Anatomic location likely to cause functional impairment

```
periorbital - astigmatism, amblyopia, etc
```

nasal - airway obstruction

"beard" distribution – subglottic hemangioma causing airway outlet obstruction

perioral – feeding difficulties

ear – external acoustic meatus obstruction

- 3. Infantile hepatic hemangioma
- 4. Syndromic

PHACES

LUMBAR

5. Disfigurement

Face, breast (in females), genitalia etc.

History of medical treatments

• 1960s

Systemic and intralesional corticosteroids Side effects ...

1980s and beginning of 1990s

Interferon-alpha: used against Kaposi sarcoma in HIV patients Used in IH resistant to CS Side effect: neurotoxicity

• 2008

Léauté-Labrèze et al: IH undergo involution in 2 infants treated with propranolol for cardiac reasons

• 2009

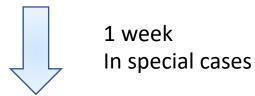
Léauté-Labrèze et al: report their experience with 32 patients with IH successfully treated with propranolol 2 to 3 mg/kg/day.

Propranolol

- Lipophilic nonselective β -adrenergic receptor-blocking agent
- Completely absorbed after oral administration
- After first hepatic pass => 25% reaches the systemic circulation
- Maximum plasma concentration is reached after 1 to 4 hours of administration
- The metabolism is mainly hepatic and metabolites are excreted in urine
- The half life of plasmatic elimination is 3 to 6 hours

What is the mechanism of action of propranolol?

Not yet elucidated but several hypothesis:


- Inhibition of angiogenesis
- Induction of apoptosis
- Diminution of renin-angiotensin axis
- Inhibition of nitric oxide production
- Vasoconstriction

Propranolol

Initial dosage: 1 mg/kg/d divided in 2 doses

Increase to 2 mg/kg/d

Increase to 3 mg/kg/d

First dose and each increase of dosage is done under clinical observation at hospital.

Monitoring

Blood pressure and pulsations

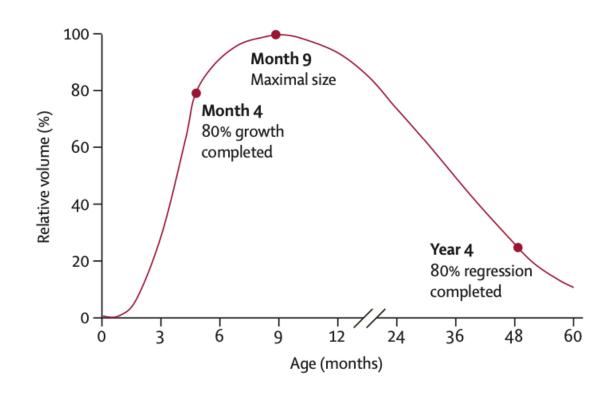
- Before introduction of propranolol
- 30 min after
- 60 min after
- 2 h after

Blood pressure > 70 mmHg Pulsations: > 100/min

If baby is sleeping >70/min

Age	0-3 mois	3-6 mois	6-12 mois
Fréquence cardiaque (battements/min)	100	90	80

Age	0-3 mois	3-6 mois	6-12 mois
Pression artérielle (mm Hg)	65/45	70/50	80/55


Compendium suisse des médicaments

Propranolol

Complications	Contraindication
❖ Sinusal bradycardia	❖ Sinusal bradycardia
Hypotension	Hypotension
Bronchospasm	A-V block of second and third degree
Cold extremities	Cardiogenic shock/ uncontrolled cardiac
Hypoglycemia	insufficiency
Sleep disturbance, nightmares	Hyper sensibility to propranolol or one of the
Diarrhea	excipients
	Infants prone to hypoglycemia

When to start and stop the treatment?

- Initiation during proliferative phase
- Can still lead to improvement when started at 9-12 months
- Stop: 12 to 18 months of age
- Predictive factors for rebound growth after cessation of treatment:
 - Female sex
 - Localization head and neck, segmental and deep IH
 - Discontinuation of treatment before 6 months of age

C. Léauté-Labrèze et al. Infantile hemangioma. Lancet 2017.

Other systemic beta blockers

Atenolol

Large, hydrophilic, selective β 1-adrenergic receptor blocking agent

Atenolol compared to propranolol had similar efficacy and fewer adverse events in the treatment of infants with problematic IHs

Ji Y et al. JAMA Otolaryngol Head Neck Surg. 2021;147:599-607

Nadolol

Non selective beta blocker

Advantage: do not cross blood brain barrier => obviating sleep disturbances

Risk: not metabolized => excreted unchanged via feces => risk of reabsorbtion and accumulation in case of constipation

1 reported case of death in a new born

McGillis E et al. Pediatrics. 2020;145:e20191035

Topical Timolol

- Timolol maleate 0.5%, a nonselective β -blocker
- Effective for treatment of thin, superficial IH
- Poor efficacy in thick or deep IH
 - Systemic absorption is documented
- Topical timolol is well tolerated in the treatment of early proliferative IH but provides limited benefit in the resolution of lesions when given during the early proliferative stage.

Munoz-Garza et al. Efficacy and safety of topical Timolol for the treatment of IH in the early proliferative stage. JAMA Dermato. 2021;157:583-587.

 Dosage: 1 drop/kg but some authors suggest not to exceed 2 drops per day

Treatment of complications

- Telangiectasia => vascular laser such as PDL
- Structural deformity => surgery
- Scars => ablative fractionated laser

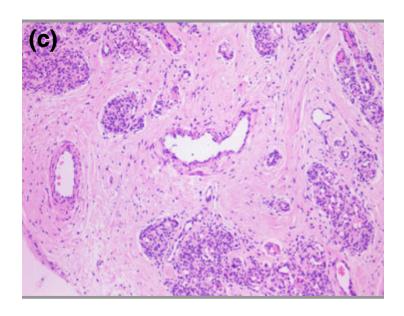
Congenital hemangioma

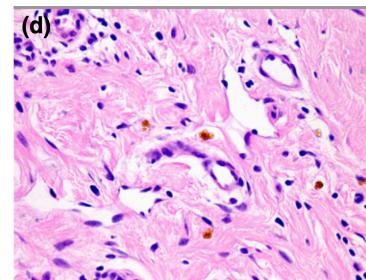
Congenital hemangioma

Rapidly involuting **RICH** Non-involuting NICH Partially involuting **PICH**

RICH

- Present at birth
- F=M
- Spontaneous involution during the first year of life
- Asymptomatic
- Violaceous mass with telangiectasia at surface
- Localization: mainly on lower limbs
- Complications:
 - Transitory thrombocytopenia
 - Necrosis
 - Ulceration
 - Hemorrhage




Bologna text book

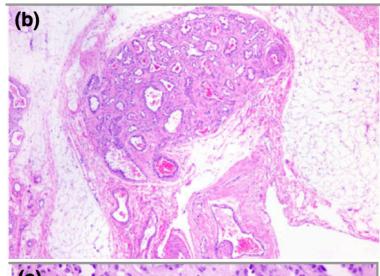
RICH (histology)

- Small lobules of capillaries embedded in a fibrous stroma
- Immunohistochemestry: GLUT-1 negative

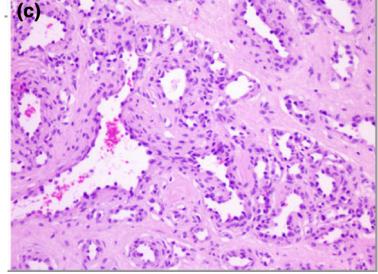
P.H. Hoeger BJD 2014

NICH

- Present at birth
- 2 subtypes:
 - Nodular
 - Patch
- Well demarcated pink to blue patch/nodule with overlying telangiectasia and a pale or bluish rime
- Location predilection: extremities and postauricular
- Sometimes painful
- Thermic gradient



P.H. Hoeger BJD 2014



NICH (histology)

- Large fibrotic lobules of dilated vascular channels
- Nonatypical hobnail endothelial cells lining the vascular channels
- Immunohistochemestry: GLUT-1 negative

P.H. Hoeger BJD 2014

Partially involuting congenital hemangiomas: A report of 8 cases and review of the literature

Eiman Nasseri, MD,^a Maryam Piram, MD, MPH,^a Catherine C. McCuaig, MD,^a Victor Kokta, MD,^b Josée Dubois, MD,^c and Julie Powell, MD^a Montreal, Quebec, Canada

J AM ACAD DERMATOL 2014

Fig 1. Partially involuting congenital hemangioma. Vascular lesions on left temple (**A**) and right arm (**B**) at 1 month of age with red-purple color, telangiectasia, and surrounding pallor.

Fig 2. Partially involuting congenital hemangioma. Residual vascular lesions on left temple (**A**) and right arm (**B**) at 3 years of age showing red-purple color, telangiectasia, and surrounding pallor.

Treatment

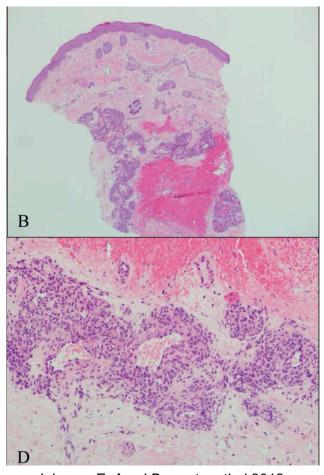
RICH	NICH
No treatment needed Watchful waiting	In cosmetically sensitive area: Nd-YAG lasertherapy Surgery

Tufted angioma (TA) and Kaposiform hemangioendothelioma (KHE)

- Many experts believe that KHE and TA are part of a spectrum.
- They both have a podoplanin-positive lymphatic endothelial immunophenotype.
- Podoplanin is a natural ligand for CLEC-2 (C type lectine receptor) expressed on platelets that has a powerful platelet activation upon binding to podoplanin.
- Both tumors have potential to induce Kasabach–Merritt phenomenon (KMP) which is a profound thrombopenia due to platelet trapping in the tumor.
- GNA 14 mutations are detected in both tumors

Tufted angioma

- 15% are present at birth and majority appear before age of 5 years
- F = M
- They either stay stable, regress or progress
- Complete regression is rare
- Mottled Pink-red/Red-brown plaque or patch with super imposed angiomatous plaque
- Localization: Upper trunk, neck/ shoulders
- May be painful
- 38% develop KMP



Johnson E. Am J Dermatopathol 2018



Histology

- "cannonball" distribution of lobules of capillaries lined with bland endothelial cells and surrounded by pericytes. Involving the dermis and superficial subcutis.
- Immunohistochemestry:
 - Glut-1 -
 - CD 31 et CD 34 +
 - D2-40
 (podoplanin/lymphatic endothelioma) et LYVE-1 focally +

Johnson E. Am J Dermatopathol 2018

Mckee dermatopathology texte book

Kaposiform hemangioendothelioma (KHE)

- Rare 0.91/100000 enfant
- F = M
- 60% present at or within 1 month of birth
- Superficial, locally infiltrative maculopapule or plaque or indurated mass.
- Localization: Extremities, trunk, head and neck
- Locally aggressive tumor
- 71% develop KMP

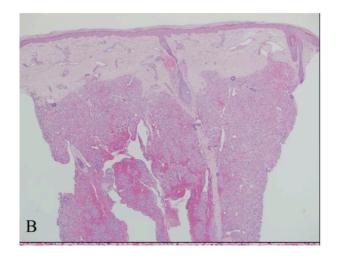
Johnson E. Am J Dermatopathol 2018

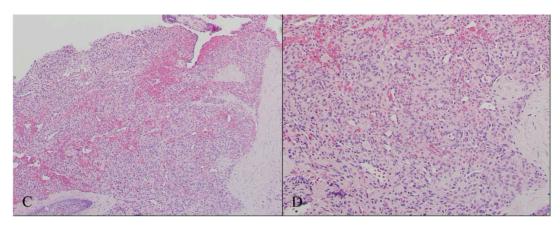
Histology

Coalescing lobules of infiltrative spindled endothelial cell fascicles.
Spindle cells are surrounded by nests of more epithelioid endothelial cells.

Immunohistochimie:

Glut-1 -


CD 31 +


CD 34 focally +

D2-40 +

LYVE-1 focally +

Prox 1 +

Johnson E. Am J Dermatopathol 2018

Kasabach-Merritt phenomenon (KMP)

- Rapidly growing tumor
- Associated with pain and purpuric aspect
- Lab tests:
 - Hb drop
 - Thrombocytopenia
 - Decrease of fibrinogen
 - Elevation of D-dimer
 - PT et aPTT: Normal or slightly increased

Bologna text book

Treatment

TA	KHE	If KMP
Clinical follow-up Small lesions: surgical excision	If localized or superficial: surgical excision Sirolimus alone in association with prednisone	Hemodynamic stabilization Sirolimus (rapamicine: mTor inhibitor): -alone -in association with prednisone
		Vincristine (efficient in 60-70% of cases)

Thanks for your attention

References

- Christine Léauté-Labrèze C, Harper JI, Hoeger PH. Infantile Hemangioma. Lancet. 2017; 390:85-94.
- O'Brien KF, Shah SD' Pope E and al. Late Growth of Infantile Hemangiomas in Children >3 Years of Age: A Retrospective Study. J Am Acad Dermatol. 2019; 80:493-499.
- Garzon Mc et al. PHACE Syndrome: Consensus-Derived Diagnosis and Care Recommendations. J pediatr 2016;178:24-33
- Endicott A et al. Mapping of Segmental and Partial Segmental Infantile Hemangiomas of the Face and Scalp. JAMA Dermatol. 2021;157:1328-1334.
- Johnson EF, Davis DM, Tollefson MM, Fritchie K, Gibson LE. Vascular Tumors in Infants: Case Report and Review of Clinical, Histopathologic, and Immunohistochemical Characteristics of Infantile Hemangioma, Pyogenic Granuloma, Noninvoluting Congenital Hemangioma, Tufted Angioma, and Kaposiform Hemangioendothelioma. Am J Dermatopathol 2018;40:231-239.
- Hoeger P.H. and Colmenero I. Vascular tumours in infants. Part I: benign vascular tumours other than infantile haemangiom. BJD 2014;171,466–47.
- Colmenero I and Hoeger P.H. Vascular tumours in infants. Part II: vascular tumours of intermediate dignity and malignant tumours. BJD 2014;17:474-84.
- Eiman Nasseri E, Piram M, McCuaig C, et al. Partially involuting congenital hemangiomas: A report of 8 cases and review of the literature. JAAD 2014;70:75
- Lee, PW, Frieden IJ, Streicher JL et al. Characteristics of noninvoluting congenital hemangioma: A retrospective review. J Am Acad Dermatol 2014;70:899-903
- Léauté-Labrèze C, Harper JI, Hoeger PH. Infantile Hemangioma. Lancet. 2017; 390:85-94.
- Wilson-Jones E, Orkin M. Tufted angioma (angioblastoma). A benign progressive angioma, not to be confused with Kaposi's sarcoma or low-grade angiosarcoma. Am Acad Dermatol.1989;20:214-25
- ISSVA Classification of Vascular Anomalies ©2018. International Society for the Study of Vascular Anomalies; (2018). Available online at: issva.org/classification (accessed March 19, 2020).
- Boccara A, Fraitag S, Lasne D et al. Kaposiform Haemangioendothelioma-spectrum Lesions with Kasabach-Merritt Phenomenon: Retrospective Analysis and Long-term Outcome Acta Derm Venereol 2016; 96: 77–81.
- Drolet B, Boakye-Agyeman F, Harper B et al. Systemic timolol exposure following topical application to infantile hemangiomas. J Am Acad Dermatol. 2020;82:733-736